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Abstract

Deep learning models have been shown to be impres-
sively powerful in tasks such as image classification and
object recognition given massive amounts of labeled data.
However, it is still an open challenge on the domain where
only few labeled data are available. Inspired by the previ-
ous work Unsupervised Domain Adaptation by Backpropa-
gation [5], aiming at minimizing the gap between deep fea-
tures from target domain and source domain, we decide to
implement the content mentioned in this paper. The project
will contains experiments evaluating the performance of the
classifiers trained with the proposed architecture in [5].
Several domain adaptation tasks will be conducted using
dataset including MNIST [13], MNIST-M, Synthetic num-
bers, SVHN [18], Synthetic Signs, GTSRB [24], Office.
Moreover, we will extend the paper in the follow 4 directions
(i) applying the proposed architecture to different kinds of
pretrained models (ii) conducting experiments on dataset
that are not listed in [5] (iii) examining and comparing
the adaptation difficulties between different datasets.(iv) in-
vestigating the possibility of solving the domain adaptation
problem with generative adversarial network [8, 1, 2]

1. Introduction
The last few years have shown that large convolutional

neural networks (CNNs), such as Alexnet [12], VGG [23],
GoogleNet [25], ResNet [9], etc. achieve previously un-
matched image classification performance. The successful-
ness of these deep models are established on the large scale
labeled image dataset ImageNet [4].

For most of the applications which uses deep learning
models as basic architecture, the models are pretrained on
ImageNet and transferred to the specific task by fine-tuning.
However, fine-tunning is only useful when the labeled data
for the specific task is available to the developer. For the
cases where only limited amount of labeled data or no la-
beled data are available, insufficiently-tunned deep model
will fail in solving the interested task. Such scenarios are

quite common in the real world application. For example,
medical images are really rare and hard to collect, which
makes fine-tunning techniques no longer useful in medical
images classification task.

Although lacking of large-scale labeled dataset for the
targeted task, there are lots of relevant datasets that might
be useful for the targeted task. Take multiview image clas-
sification task for example. There is no existing large-scale
labeled dataset containing multiview of the real images, but
the synthetic graphical 3D image dataset, such as Model-
Net [29] and ShapeNet [3], are available to the public. As
a result, the question becomes whether it is possible to uti-
lize those labeled data from different domain and apply the
trained classifier to the targeted task.

In this situation, domain adaptation often provides an at-
tractive solution, given that labeled data of similar nature
but from a different domain (e.g. synthetic images) are
available. Among all the domain adaptation relative works,
the paper Unsupervised Domain Adaptation by Backpropa-
gation [5] is one of the earliest papers in this field, which
is cited by lots of papers. In this project, we want to im-
plement the proposed solution in this paper, and test it by
the experiments talked in this paper. Moreover, if time is
enough, we also want to apply this approach in other fields,
which are not talked about in this paper.

2. Related work
There has been a great amount of research in the field

of domain adaptation and transfer learning in the past few
decades. Most of the previous work are established on the
shallow learning methods, including [22, 19, 6]. The pre-
vious shallow learning domain adaptation methods aim to
solve the domain shift between the source and target do-
mains and those methods can be mainly separated into 2 cat-
egories. The first category learns the share feature space be-
tween target and source domain [19, 6], while the other cat-
egory trains the classifier on the weighted source data [22].

As the emergence of deep learning, many deep features
are extracted using deep learning methods. The deep fea-
tures are the high level abstract representation of the input
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and is shown to effectively encode the important informa-
tion of the input. An emerging problem in deep learning is
that it is prone to overfitting to the training data or source
domain. Such problem restricts the generalization of the
trained classifier. As a result, recent works have intensively
addressed this problem by combining the domain adapta-
tion task with deep learning.

The literature of domain adaptation can be separated
into 2 categories. The first category uses part of the tar-
get data, either unsupervised or semi-supervised, to bridge
the discrepancy between source and target domain. Previ-
ous works include [10, 16, 15, 20, 28]. The second category
uses a discriminator to distinguish between domains, so that
the feature extractor can learn a domain invariant feature re-
gardless the input domain to fool the domain discriminator.
[14, 11, 26, 27] and the paper Unsupervised Domain Adap-
tation by Backpropagation that we are implementing falls
into this category.

The nature of Deep Domain Adaptation (DDA) [5] is a
minimax game, very like that of a Generative Adversarial
Network (GAN). However, traditional GAN [7] is very hard
to train because the loss cannot indicate the network’s per-
formance. Furthermore, the training of generator and dis-
criminator has to be balanced well, which is just like what
we do to the label classifier and domain classifier in DDA
and is very tricky. However, Wasserstein GAN [1] fixed the
problem by using Wasserstein distance as the optimization
goal instead of KL divergence or JS divergence. This makes
the loss able to indicate training process and makes the dis-
criminator can be trained to converge. Taken into account
Wasserstein distance’s success in both theory and practice,
and its similar nature to DDA, it is highly possible that it
can be applied to DDA to improve the performance.

3. Schedule
We plan to divide our project into four phases.
(1) We are going to read the paper detailedly about how

the approach works, how the experiments in this paper are
conducted, etc. These work will be finished before our pre-
sentation in class, which is planned on April 30th.

(2) Then we will implement the approach in pytorch, as
we plan at present, and test the implementation in the situ-
ation: source dataset: MNIST [13], target dataset: MNIST-
M. Phase two is to be finished before May 10th.

(3) For phase three, we will try to complete all the experi-
ments talked about in this paper, and then compare the final
project with the paper and see whether we have achieved
our goal, this work is expected to be accomplished before
Jun 1st.

(4)For phase four, this is an optional one, based on the
implementation we accomplished in the first three phase,
we will test it in other fields which is not talked about in
the paper. Moreover, since the proposed method does not

have well adaptation from MNIST [13] to SVHN [18], we
would like to investigate the possibility to use generative
adversarial network [8, 1] to solve the problem.

4. Resources
Training resource: Provided by this course.
Software: We plan to finish our work in Pytorch, and

there is no realized Pytorch code for this paper on the Inter-
net.

Datasets: MNIST [13], MNIST-M [5], Synthetic num-
bers [5], SVHN [18], Synthetic Signs, GTSRB [24], Office
Dataset [21]. Synthetic Signs dataset is used in [5], and is
provided by [17].

Based on the experiments of the work Unsupervised Do-
main Adaptation by Backpropagation [5], the source do-
main and the target domain will be the followings in Table
1.

Table 1. Source and target domain for each experiment
Experiment Source Domain Target Domain

1 MNIST MNIST-M
2 SYN NUMBERS SVHN
3 SVHN MNIST
4 SYN SIGNS GTSRB
5 AMAZON WEBCAM
5 DSLR WEBCAM
5 WEBCAM DSLR

Like the work in Unsupervised Domain Adaptation by
Backpropagation [5], excluding the experiments for do-
main adaptation, we will also conduct the ”source-only”
experiments(i.e. if no adaptation is performed), which is
the lower performance bound, and the ”target-only” experi-
ments (training on the target domain data with known class
labels), which is the upper bound on the DA performance.
Especially, for the target-only experiments, we will divide
the target domain data with known class labels by 8:2 for
training data and testing data.

5. Question need to be answered
(1) Hyper-parameters. In [5], the hyper-parameter λ is

critical to the model’s performance. It controls the trade-off
between the two objectives that shape the features during
learning. How to search a good λ efficiently remains as a
question.

(2) The proposed solution in [5] fails in adapting data
from MNIST to SVHN. What could be the reason leading
to this failure? If we can figure out this, we may find a way
to improve it. Another idea would be introducing methods
that performs well in other tasks (e.g. Wasserstein GAN [1])
to our work.
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